Math 595 Quantum channels

Exercise sheet 2 - February 14, 2023

Unless stated otherwise, $\mathcal{H}, \mathcal{H}_{1}, \mathcal{H}_{2}, \ldots$ denote finite-dimensional Hilbert spaces.

1. Let $T: \mathcal{L}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{2}\right)$ and $S: \mathcal{L}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{3}\right)$ be CPTP maps. Show that $S \circ T: \mathcal{L}\left(\mathcal{H}_{1}\right) \rightarrow$ $\mathcal{L}\left(\mathcal{H}_{3}\right)$ is CPTP as well.
2. $\frac{\operatorname{tr} \rho}{2} \mathbb{1}=\frac{1}{4}(\rho+X \rho X+Y \rho Y+Z \rho Z)$ for any $\rho \in \mathcal{L}\left(\mathbb{C}^{2}\right)$.

Hint: You can show this by brute-force computation; a more elegant proof is based on Schur's Lemma.
3. Let $\vartheta: X \mapsto X^{T}$ denote the transition map. Show that $\vartheta \circ T \circ \vartheta$ is $C P$ iff T is $C P$.
4. Any linear operator $W \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ can be written as

$$
\begin{equation*}
W=\frac{1}{2}\left(w_{0} \mathbb{1}+w_{1} X+w_{2} Y+w_{3} Z\right) \tag{1}
\end{equation*}
$$

with $w_{i} \in \mathbb{C}$. Show the following:
(a) W is Hermitian iff $w_{i} \in \mathbb{R}$.
(b) W has unit trace iff $w_{0}=1$.
(c) W is positive semidefinite iff $\|\mathbf{w}\|_{2} \leq w_{0}$, where $\mathbf{w}=\left(w_{x}, w_{y}, w_{z}\right)^{T} \in \mathbb{R}^{3}$ is called the Bloch vector.
(d) W is a pure qubit state iff $\|\mathbf{w}\|_{2}=1$.
5. Setting $\sigma=(X, Y, Z)$, a qubit-qubit channel $\mathcal{N}: \mathcal{L}\left(\mathbb{C}^{2}\right) \rightarrow \mathcal{L}\left(\mathbb{C}^{2}\right)$ can be written with respect to the basis (1) as

$$
\begin{equation*}
\mathcal{N}\left(\frac{1}{2}\left(w_{0} \mathbb{1}+w_{1} X+w_{2} Y+w_{3} Z\right)\right)=\frac{1}{2}\left(w_{0} \mathbb{1}+(\mathbf{t}+T \mathbf{w}) \cdot \sigma\right), \tag{2}
\end{equation*}
$$

where $\mathbf{t} \in \mathbb{R}^{3}$ and T is a real 3×3-matrix. Alternatively, one may write the action of \mathcal{N} on the vector $\left(w_{0}, w_{1}, w_{2}, w_{3}\right)^{T}$ in terms of a 4×4-matrix

$$
N=\left(\begin{array}{ll}
1 & 0 \tag{3}\\
\mathbf{t} & T
\end{array}\right)
$$

The fact that $N_{1 j}=0$ for $j=2,3,4$ reflects the trace-preserving condition for \mathcal{N}.
Show the following:
(a) \mathcal{N} is unital iff $\mathbf{t}=\mathbf{0}$.
(b) \mathcal{N} is a Pauli channel, $\mathcal{N}: \rho \mapsto p_{0} \rho+p_{1} X \rho X+p_{2} Y \rho Y+p_{3} Z \rho Z$, iff $\mathbf{t}=\mathbf{0}$ and the corresponding matrix T defined via (2) is diagonal. ${ }^{1}$
(c) Use $5 b$ to show that any unital qubit channel \mathcal{N} is unitarily equivalent to a Pauli channel, i.e., there exist unitaries U and V such that $U \mathcal{N}\left(V \cdot V^{\dagger}\right) U^{\dagger}$ is a Pauli channel.
Hint: Use the singular value decomposition for the matrix T. Linear transformations acting on $\mathbf{w} \in \mathbb{R}^{3}$ are mapped to linear transformations on \mathbf{C}^{2} via (2). What is the image of an orthogonal transformation under this mapping?
Comment: Following Footnote 1, the resulting Pauli map is indeed CP if \mathcal{N} is a unital channel.
(d) Use 5 c to show that every unital qubit channel \mathcal{N} is a mixed-unitary channel, i.e., there are unitaries U_{1}, \ldots, U_{k} and a probability distribution $\left(p_{1}, \ldots, p_{d}\right)$ such that $\mathcal{N}=$ $\sum_{i=1}^{k} p_{i} U_{i} \cdot U_{i}^{\dagger}$.
6. Determine complementary channels of:
(a) the erasure channel $\mathcal{E}_{p}: \rho \mapsto(1-p) \rho+p \operatorname{tr}(\rho)|e\rangle\langle e|$;
(b) the Z-dephasing channel $\mathcal{F}_{p}^{Z}: \rho \mapsto(1-p) \rho+Z \rho Z$.
7. Recall that a generalized dephasing channel on \mathbb{C}^{d} is defined in the following way: Let $\{|i\rangle\}_{i=1}^{d}$ be an arbitrary orthonormal basis for \mathbb{C}^{d}, and let $\left\{\left|\phi_{i}\right\rangle_{E}\right\}_{i=1}^{d}$ be an arbitrary set of vectors in an auxiliary Hilbert space \mathcal{H}_{E} with $\operatorname{dim} \mathcal{H}_{E} \geq 2$. Then the channel isometry is defined by the action on this basis as $|i\rangle \mapsto|i\rangle \otimes\left|\phi_{i}\right\rangle_{E}$.
(a) Determine a basis $\{|i\rangle\}_{i=0,1}$ and vectors $\left\{\left|\phi_{i}\right\rangle_{E}\right\}_{i=0,1}$ for the Z-dephasing channel in 6b.
(b) Prove that any complementary channel of a generalized dephasing channel is entanglementbreaking.
(c) Prove that generalized dephasing channels are degradable.

Hint: Either explicitly construct a degrading map \mathcal{D} satisfying $\mathcal{N}^{c}=\mathcal{D} \circ \mathcal{N}$ where \mathcal{N} is a generalized dephasing channel, or use $7 b$ directly.
(d) Let $U_{1}, \ldots, U_{k} \in \mathcal{U}\left(\mathbb{C}^{d}\right)$ be unitaries, $\left(p_{1}, \ldots, p_{k}\right)$ be a probability distribution, and $\mathcal{N}=$ $\sum_{i=1}^{k} p_{i} U_{i} \cdot U_{i}^{\dagger}$ be a mixed unitary channel. Give a sufficient condition for \mathcal{N} to be a generalized dephasing channel.

$$
\begin{align*}
& { }^{1} \text { Let } T=\left(\begin{array}{ccc}
t_{1} & 0 & 0 \\
0 & t_{2} & 0 \\
0 & 0 & t_{3}
\end{array}\right) \text {, then the corresponding Pauli channel has parameters } \\
& p_{0}=\frac{1}{4}\left(t_{1}+t_{2}+t_{3}+1\right) \quad p_{1}=\frac{1}{4}\left(t_{1}-t_{2}-t_{3}+1\right) \quad p_{2}=\frac{1}{4}\left(-t_{1}+t_{2}-t_{3}+1\right) \quad p_{3}=\frac{1}{4}\left(-t_{1}-t_{2}+t_{3}+1\right), \tag{4}
\end{align*}
$$

which defines a probability distribution if and only if

$$
\begin{equation*}
1 \pm t_{3} \geq\left|t_{1} \pm t_{2}\right| \tag{5}
\end{equation*}
$$

These relations coincide with the complete positivity conditions for unital maps defined via (2), as proved by King \& Ruskai in arXiv:quant-ph/9911079.

