MATH 416 Abstract Linear Algebra

Homework Week 11 - November 4, 2021

Exercise 1 (2 points): Adjoint maps

- (i) Let $T \in \mathcal{L}(V)$ and U be a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^* .
- (ii) Let $T \in \mathcal{L}(V, W)$. Show that *T* is injective if and only if T^* is surjective.

Exercise 2 (4 points): Self-adjoint maps and Pauli matrices Consider the Pauli matrices $I, X, Y, Z \in M_2(\mathbb{C})$, defined as

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Show that $\{I, X, Y, Z\}$ is a basis for the real vector space $S_2(\mathbb{C}) = \{A \in M_2(\mathbb{C}) : A^* = A\}$ of self-adjoint complex (2×2) -matrices.

Exercise 3 (4 points): Normal operators

Consider the basis $\{v_1, v_2, v_3\}$ for \mathbb{R}^3 defined as $v_1 = (1, 0, -2)^T$, $v_2 = (0, 3, 0)^T$, $v_3 = (2, 0, 1)^T$. Let S be the standard basis of \mathbb{R}^3 .

- (i) Show that $M = \mathcal{M}(I)_{\mathcal{B},\mathcal{S}}$ is a normal matrix, i.e., $M^*M = MM^*$.
- (ii) Let now $C = \{c_1v_1, c_2v_2, c_3v_3\}$ for some $c_i \neq 0$. Find c_1, c_2, c_3 such that $N = \mathcal{M}(I)_{C,S}$ satisfies

$$NN^* = N^*N = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Exercise 4 (5 points): Spectral theorem Consider the self-adjoint matrix

$$A = \begin{pmatrix} 2 & 1-i \\ 1+i & 3 \end{pmatrix}.$$

- (i) Find the eigenvalues of *A* and an orthonormal basis \mathcal{B} for \mathbb{C}^2 consisting of eigenvectors.
- (ii) Let $U = \mathcal{M}(I)_{\mathcal{B},\mathcal{S}}$, and compute U^*AU . What do you find?