Math 595 Quantum channels

Exercise sheet 3 – March 23, 2023

Unless stated otherwise, $\mathcal{H}, \mathcal{H}_1, \mathcal{H}_2, \ldots$ denote finite-dimensional Hilbert spaces.

- Show that any complementary channel of a generalized dephasing channel is entanglementbreaking. Use this to show that generalized dephasing channels are degradable.
- 2. Let ϑ : $X \mapsto X^T$ denote the transposition map, and let \mathcal{N} be an arbitrary CP map. Show that $\theta \circ \mathcal{N} \circ \theta$ is CP.
- 3. Let \mathcal{A}_{γ} with $\gamma \in [0, 1]$ be the amplitude damping channel with Kraus operators $K_0 = |0\rangle\langle 0| + \sqrt{1 \gamma}|1\rangle\langle 1|$ and $K_1 = \sqrt{\gamma}|0\rangle\langle 1|$.
 - (a) Let $\gamma \in [0, 1/2]$ and set $\delta = \frac{1-2\gamma}{1-\gamma}$. Show that $\mathcal{A}_{1-\gamma} = \mathcal{A}_{\delta} \circ \mathcal{A}_{\gamma}$.
 - (b) Show that $\mathcal{A}_{\gamma}^{c} = \mathcal{A}_{1-\gamma}$ for all $\gamma \in [0,1]$ is a possible choice of complementary channel.
 - (c) Use these results to argue that A_{γ} is degradable for $\gamma \in [0, 1/2]$ and antidegradable for $\gamma \in [1/2, 1]$.
- 4. Show that the amplitude damping channel A_{γ} is covariant with respect to the group $G = \{1, Z\}$ (and identical representations on the input and output space).
- 5. The von Neumann entropy *S* is defined for quantum states $\rho \in \mathcal{B}(\mathcal{H}), \rho \geq 0, \text{tr} \rho = 1$ as $S(\rho) = -\operatorname{tr} \rho \log \rho$.¹ One of its properties is *subadditivity*.²

$$S(\rho_{AB}) \le S(\rho_A) + S(\rho_B) \tag{1}$$

(a) Let $\rho_{XA} = \sum_{x} p_x |x\rangle \langle x|_X \otimes \rho_A^x$ be a classical-quantum state. Prove that

$$S(\rho_{XA}) = H(\{p_x\}) + \sum_{x} p_x S(\rho_A^x),$$
(2)

where $H({p_x}) = -\sum_x p_x \log p_x$ is the Shannon entropy.

(b) Use (1) and (2) to prove concavity of the von Neumann entropy:

$$S\left(\sum_{x} p_{x} \rho_{x}\right) \geq \sum_{x} p_{x} S(\rho_{x}).$$

$$\log
ho = \sum_{i: \ \lambda_i > 0} \log(\lambda_i) |\psi_i
angle \langle \psi_i |$$

²We will prove a stronger form of this property called *strong subadditivity* in the second half of the course.

¹Let $\rho = \sum_i \lambda_i |\psi_i\rangle \langle \psi_i|$ be a spectral decomposition of the state ρ . Then the operator $\log \rho$ is defined via spectral calculus:

Hint: Assemble the state ensemble $\{p_x, \rho_x\}$ *in a classical-quantum state* ρ_{XA} *and evaluate both sides of* (1) *for this state.*

6. Let $|\Phi^+\rangle_{AA'} = \frac{1}{\sqrt{d}} \sum_{i=1}^d |i\rangle_A \otimes |i\rangle_{A'}$ with $d = \dim \mathcal{H}_A = \dim \mathcal{H}_{A'}$ be a maximally entangled state, and let $\mathcal{N} \colon A \to A$ be a quantum channel. Then the *entanglement fidelity* $F(\mathcal{N})$ is defined as

$$F(\mathcal{N}) = \langle \Phi^+ | (\mathrm{id}_A \otimes \mathcal{N})(\Phi^+) | \Phi^+ \rangle.$$

There is a related quantity called the *average fidelity*: let $\int_{\mathcal{U}(d)} dU$ denote the Haar integral with respect to the Haar measure on the unitary group $\mathcal{U}(d)$ on \mathcal{H}_A , and for a channel $\mathcal{N}: A \to B$ define the average fidelity $f(\mathcal{N})$ as

$$f(\mathcal{N}) = \int_{\mathcal{U}(d)} dU \langle \phi | U^{\dagger} \mathcal{N}(U \phi U^{\dagger}) U | \phi \rangle,$$

where $|\phi\rangle \in \mathcal{H}_A$ is a fixed but arbitrary pure state.

- (a) Show that both $f(\mathcal{N})$ and $F(\mathcal{N})$ are invariant under channel twirling, i.e., $f(\mathcal{N}) = f(\mathcal{N}_{\mathcal{U}(d)})$ and $F(\mathcal{N}) = F(\mathcal{N}_{\mathcal{U}(d)})$ where $\mathcal{N}_{\mathcal{U}(d)}(X) = \int_{\mathcal{U}(d)} dU U^{\dagger} \mathcal{N}(UXU^{\dagger}) U$.
- (b) Verify that a depolarizing channel D_q: ρ → (1 − q)ρ + q tr(ρ)¹/_d 𝔅_A satisfies the following identity for entanglement fidelity and average fidelity:

$$f(\mathcal{D}_q) = \frac{F(\mathcal{D}_q)d + 1}{d+1}.$$
(3)

(c) Use Exercises 6a and 6b to show that (3) holds for *arbitrary* channels \mathcal{N} :

$$f(\mathcal{N}) = \frac{F(\mathcal{N})d + 1}{d + 1}.$$

Hint: What do we know about the channel $\mathcal{N}_{\mathcal{U}(d)}$ *in 6a?*

7. Let *G* be a compact group and $g \mapsto U_g$ be an irreducible unitary representation on \mathcal{H}_A . Show that, for any $X_{AB} \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_B)$,

$$\frac{1}{|G|}\sum_{g\in G}(U_g\otimes \mathbb{1}_B)X_{AB}(U_g\otimes \mathbb{1}_B)^{\dagger}=\frac{1}{|A|}\mathbb{1}_A\otimes X_B,$$

where $X_B = \operatorname{tr}_A X_{AB}$.