Symmetries and asymptotics of port-based teleportation

Felix Leditzky
Dept. of Mathematics & IQUIST
University of Illinois at Urbana-Champaign
Papers and collaborators

First part of the talk: Optimality of the pretty good measurement for PBT

Second part of the talk: Asymptotic performance of port-based teleportation

Joint work with:
M. Christandl
C. Majenz
G. Smith
F. Speelman
M. Walter
Entanglement and teleportation

"An entangled state describes the complete knowledge of the whole without knowing the state of any one part."

- Charles H. Bennett

Photo: Abdus Salam ICTP Dirac Medal Award
Entanglement and teleportation

Entanglement: strong form of non-local correlation between separated systems.

Incredibly useful for quantum information-processing when used together with other resources.
Entanglement and teleportation

Breakthrough result in 1993: Quantum teleportation

Bennett et al. (see image) realized that correlation in an entangled state and classical communication can be used to teleport an unknown quantum state.

Standard teleportation protocol

Idea of teleportation: entanglement + classical channel = quantum channel

[Bennett et al. '93]
Standard teleportation protocol

Steps:
1) Alice performs Bell measurement on CA$_1$.
2) Alice sends classical outcome i to Bob.
3) Bob applies correction operation V$_i$ to B.

[Bennett et al. '93]
Standard teleportation protocol

Advantages:
- Target state is teleported exactly.
- Beautifully simple!

Disadvantage:
- Protocol cannot implement unitary U on teleported state if $[U, V_i] \neq 0$.

[Bennett et al. '93]
Standard teleportation protocol

Advantages:
- Target state is teleported exactly.
- Beautifully simple!

Disadvantage:
- Protocol cannot implement unitary U on teleported state if $[U,V_i] \neq 0$.

Port-based teleportation is a variant of standard teleportation:

"Disadvantages":
- State is teleported approximately.
- Slightly more complicated.

Advantage:
- Protocol can implement arbitrary unitary U on teleported state.
Table of contents

→ Port-based teleportation: Definition and properties

→ Symmetries of port-based teleportation

→ Asymptotics of port-based teleportation

→ Generalizations and concluding remarks
Port-based teleportation

[Ishizaka, Hiroshima '08]
Port-based teleportation

Steps:
1) Measurement
2) Classical communication
3) Correction

[Ishizaka, Hiroshima '08]
Port-based teleportation

Unitary covariance:
"Correction" (partial trace) commutes with any unitary applied to all of Bob's ports.

Initial state $|\psi\rangle_C$ is teleported to $U|\psi\rangle_C$.

Caveat:
Protocol cannot be perfect for finite resources. $(N < \infty)$
Port-based teleportation

Nevertheless, unitary covariance enables interesting applications of PBT:

- Universal programmable quantum processors
- Attacks on position-based cryptography
- Quantum channel discrimination

[Ishizaka, Hiroshima '08; Beigi, König '11; Buhrman et al. '14; Pirandola et al. '19]
Quantifying performance of PBT

Goal of PBT:
Approximate identity channel
\(C \rightarrow B_i \equiv C'. \)

Let \(\Lambda : C \rightarrow C' \) denote the effective teleportation channel.

Entanglement fidelity:
\[
F(\Lambda) = \text{Tr} \left[\Phi^+_{C'C''} (\Lambda \otimes \text{id}) (\Phi^+_{C'C''}) \right]
\]
Fundamental insight:

Teleporting C of $\Phi_{CC'}^+$ through ports $\eta_i \equiv \eta_{A^NB_i}$ with uniform prior $\frac{1}{N}$:

$$F(\Lambda) = \frac{N}{d^2} \rho_{\text{succ}}$$

Equivalence holds more generally for **arbitrary port states** $\rho_{A^NB^N}$.

[Ishizaka, Hiroshima '08] | 15
Semidefinite programming

State discrimination problem: distinguish states η_i with prior probabilities p_i.

Primal problem P

Maximize: $\sum_{i=1}^{N} p_i \text{Tr} (\eta_i E_i)$

subject to: $E_i \geq 0$ for all i,

$$\sum_{i=1}^{N} E_i = 1.$$

Dual problem D

Minimize: $\text{Tr} K$

subject to: $K \geq p_i \eta_i$ for all i.

Strong duality: $p_{\text{succ}} = P = D$.
Semidefinite programming

State discrimination problem: distinguish states η_i with prior probabilities p_i.

Primal problem P

Maximize: \[\sum_{i=1}^{N} p_i \text{Tr} (\eta_i E_i) \]

subject to: \[E_i \geq 0 \text{ for all } i, \]

\[\sum_{i=1}^{N} E_i = 1. \]

Dual problem D

Minimize: \[\text{Tr} K \]

subject to: \[K \geq p_i \eta_i \text{ for all } i. \]

POVM: most general definition of quantum measurement

Strong duality: $p_{\text{succ}} = P = D$.
PBT and state discrimination

Port state: \(N \) max. entangled states
\[
\rho_{A^N B^N} = (\Phi^+_{AB}) \otimes^N
\]

State discrimination problem:
\[
\eta_i = \Phi^+_{A_i B_i} \otimes (\frac{1}{d} \mathbf{1}_A) \otimes^{N-1}
\]
\[
p_i = \frac{1}{N}
\]

What is a good choice for the POVM (measurement)?
Pretty good measurement

Define average state $\bar{\eta} = \sum_{i=1}^{N} p_i \eta_i$.

Measurement operators:

$$E_i = \bar{\eta}^{-1/2} p_i \eta_i \bar{\eta}^{-1/2}$$

Easy to check:

1) $E_i \geq 0$ for all i;

2) $\sum_i E_i = \text{supp} \bar{\eta}$.

State discrimination success prob.:

1) $p_{opt}^2 \leq p_{pgm} \leq p_{opt}$
Asymptotically faithful port-based teleportation

Pretty good measurement achieves $p_{pgm} \sim d^2/N$, and hence:

$$F = \frac{N}{d^2} p_{pgm} \rightarrow 1 \text{ as } N \rightarrow \infty.$$

[Beigi, König '11]

No-Go theorem: Port-based teleportation cannot be exact with finite resources because of the unitary covariance property.

For fixed local port dimension d, port-based teleportation using PGM becomes asymptotically exact when taking the number of ports $N \rightarrow \infty$.

Main result of arXiv:2008.11194: PGM is in fact the optimal measurement.
Table of contents

→ Port-based teleportation: Definition and properties
→ Symmetries of port-based teleportation
→ Asymptotics of port-based teleportation
→ Generalizations and concluding remarks
Symmetries in state discrimination problem

Fundamental symmetry of the maximally entangled state:

$$(U \otimes U^*) |\Phi^+\rangle_{AB} = |\Phi^+\rangle_{AB}$$ for all unitaries U.

State ensemble:

$$\eta_i = \Phi^+_{A_iB_i} \otimes (\frac{1}{d} \mathbb{1}_A)^{\otimes N-1}$$

Resulting symmetries:

$$[U^{\otimes N} \otimes U^*, \eta_i] = 0$$

$$[\mathbb{1}_{A_iB_i} \otimes \pi, \eta_i] = 0 \quad (\pi \in S_{N-1})$$
Symmetries in state discrimination problem

Average ensemble state:

$$\tilde{\eta} = \Phi_{A_1 B_1}^{+} \otimes (\frac{1}{d} \mathbb{1}_A)^{\otimes N-1} + \ldots + \Phi_{A_N B_N}^{+} \otimes (\frac{1}{d} \mathbb{1}_A)^{\otimes N-1}$$

$$\left(B_i \equiv B \right)$$

Resulting symmetries:

$$[U^\otimes N \otimes U^*, \tilde{\eta}] = 0$$

$$[\mathbb{1}_B \otimes \pi, \tilde{\eta}] = 0 \quad (\pi \in S_N)$$
Symmetries on tensor product spaces

Representation space \((\mathbb{C}^d)^\otimes N\).

Symmetric group \(S_N\):
\[S_N \ni \pi: |\psi_1\rangle \otimes \ldots \otimes |\psi_N\rangle \mapsto |\psi_{\pi^{-1}(1)}\rangle \otimes \ldots \otimes |\psi_{\pi^{-1}(N)}\rangle\]

Unitary group \(U_d\):
\[U_d \ni U: |\psi_1\rangle \otimes \ldots \otimes |\psi_N\rangle \mapsto U|\psi_1\rangle \otimes \ldots \otimes U|\psi_N\rangle\]

These two representations commute and span each other’s commutant.

\[\text{\bf Schur-Weyl duality: } (\mathbb{C}^d)^\otimes N \text{ decomposes \textbf{\textit{nicely}} into } S_N \text{ and } U_d \text{ irreps.}\]
Irreducible representations

Irreducible representation is a space that does not contain any non-trivial invariant subspaces.

Partitions $\mu = (\mu_1, \ldots, \mu_d) \vdash_d N$
\[\leftarrow \text{Young diagrams} \]

Irreps of symmetric group S_N: Specht modules W_μ
Dimension: $d_\mu := \dim W_\mu$

Irreps of unitary group U_d: Weyl modules V^d_μ
Dimension: $m_{d,\mu} := \dim V^d_\mu$
Schur-Weyl duality

S_N and \mathcal{U}_d span each other's commutants on $(\mathbb{C}^d)^{\otimes N}$.

Schur-Weyl decomposition:

$$(\mathbb{C}^d)^{\otimes N} = \bigoplus_{\mu \vdash_d N} V^d_{\mu} \otimes W_{\mu}$$

Application of Schur's Lemma:

If state ρ on $(\mathbb{C}^d)^{\otimes N}$ is invariant under S_N and \mathcal{U}_d:

$$\rho = \bigoplus_{\mu \vdash_d N} r_{\mu} \mathbf{1}_{V^d_{\mu}} \otimes \mathbf{1}_{W_{\mu}}, \quad \text{where } r_{\mu} \geq 0 \text{ and } \sum_{\mu \vdash_d N} r_{\mu} m_{d,\mu} d_{\mu} = 1.$$
Pieri rule

Ensemble states η_i and average state $\bar{\eta}$ have $U^* \otimes U^{\otimes N}$ symmetry.

Incorporate $U^* \otimes U^{\otimes N}$ symmetry into Schur-Weyl decomposition using **Pieri rule**:

$$(\mathbb{C}^d)^* \otimes V^d_\mu = \bigoplus_{i: \mu_i > \mu_{i+1}} V^d_{\mu - \epsilon_i}$$

Resulting block-diagonal form of $\bar{\eta}$:

$$\bar{\eta} = \bigoplus_{\mu^{\perp d N} \alpha = \mu - \Box} S_{\mu, \alpha} 1_{V^d_\alpha} \otimes 1_{W_\mu}$$

$$\mathbb{C}^{d^{\otimes N+1}} = (\mathbb{C}^d)^* \otimes \bigoplus_{\mu^{\perp d N}} V^d_\mu \otimes W_\mu$$
Solving the state discrimination problem

Discriminate states $\eta_i = \Phi_{A_i B_i}^+ \otimes (\frac{1}{d} \mathbb{1}_A)^{\otimes N-1}$ (with uniform prior).

Pretty good measurement: $E_i = \bar{\eta}^{-1/2} \eta_i \bar{\eta}^{-1/2}$ with average state $\bar{\eta} = \sum_i \eta_i$.

Crucial ingredient: Symmetries of η_i and $\bar{\eta}$ imply block-diagonal form.

$$\bar{\eta} = \bigoplus_{\mu \leftarrow d \ N} \bigoplus_{\alpha = \mu - \square} s_{\mu, \alpha} \mathbb{1}_{V_{\alpha}} \otimes \mathbb{1}_{W_\mu}$$

$$\eta_i = \Phi_{A_i B_i}^+ \otimes \bigoplus_{\alpha' \leftarrow d \ N-1} t_{\alpha'} \mathbb{1}_{V_{\alpha'}} \otimes \mathbb{1}_{W_{\alpha'}}$$

Success probability: $p_{\text{succ}} = \frac{1}{N} \sum_{i=1}^{N} \text{Tr}(\eta_i E_i) = \frac{1}{Nd^N} \sum_{\alpha \leftarrow d \ N-1} \left(\sum_{\mu = 0}^{d^{N-1}} \sqrt{m_{d, \mu} d_\mu} \right)^2$

[Studzinski et al. '17] | 28
Optimality of pretty good measurement

Success probability: \(p_{\text{succ}} = \frac{1}{N d^N} \sum_{\alpha = d}^{N-1} \left(\sum_{\mu = \alpha}^{\alpha + \Box} \sqrt{m_{d,\mu} d_\mu} \right)^2 \)

Optimality of PGM via SDP duality: \(p_{\text{succ}} = \min \{ \text{Tr} \, K : K \geq p_i \eta_i \text{ for all } i \} \).

Show that \(K = \frac{1}{N} \sum_{i=1}^{N} \bar{\eta}^{-1/4} \eta_i \bar{\eta}^{-1/2} \eta_i \bar{\eta}^{-1/4} \) is dual feasible:

\[
\sum_{i=1}^{N} \bar{\eta}^{-1/4} \eta_i \bar{\eta}^{-1/2} \eta_i \bar{\eta}^{-1/4} \geq \eta_i \text{ for all } i.
\]

For this choice:

\(\text{Tr} \, K = p_{\text{succ}}. \)
Table of contents

→ Port-based teleportation: Definition and properties

→ Symmetries of port-based teleportation

→ Asymptotics of port-based teleportation

→ Generalizations and concluding remarks
Asymptotics of PBT performance

Entanglement fidelity: \(F(\Lambda) = \frac{N}{d^2} p_{\text{succ}} \)

\[
= \frac{1}{d^{N+2}} \sum_{\alpha \leftarrow d} \sum_{N-1} \left(\sum_{\mu = \alpha + \square} \sqrt{m_{d,\mu} d_{\mu}} \right)^2
\]

Good: Beautiful closed formula in terms of representation-theoretic data.

Bad: Hard to tell what happens for large number of ports and fixed local dimension.

Asymptotic limit: \(d \geq 2 \) fixed but arbitrary, \(N \to \infty \)

[Studzinski et al. '17] | 31
Schur-Weyl distribution and spectrum estimation

Recall Schur-Weyl duality: \((\mathbb{C}^d)^\otimes N = \bigoplus_{\mu \vdash d N} V^d_{\mu} \otimes W_{\mu}\)

Denote by \(P_\mu\) the projection onto \(V^d_{\mu} \otimes W_{\mu}\).

Schur-Weyl distribution: \(\rho_{d,N}(\mu) = \frac{1}{d^N} \text{Tr} P_\mu\)

\[
= \frac{m_{d,\mu} d_\mu}{d^N}
\]

Spectrum estimation:

Let \(X \sim \rho_{d,N}(\mu)\), then

\[
\frac{1}{N} X \xrightarrow{N \to \infty} \left(\frac{1}{d}, \ldots, \frac{1}{d}\right) \text{ in distribution.}
\]

[Alicki '88], [Keyl, Werner '01]
Fluctuations of the Schur-Weyl distribution

Spectrum estimation:

Let $\mathbf{X} \sim p_{d,N}(\mu)$, then $\frac{1}{N} \mathbf{X} \xrightarrow{N \to \infty} (\frac{1}{d}, \ldots, \frac{1}{d})$ in distribution.

Center and normalize YD’s:

$$\mathbf{Y} = \sqrt{\frac{d}{N}} (\mathbf{X} - (\frac{N}{d}, \ldots, \frac{N}{d}))$$

“Central limit theorem”:

$$\mathbf{Y} \xrightarrow{N \to \infty} \text{spec}(\mathbf{G})$$ in distribution,

where $\mathbf{G} \sim \text{GUE}_0(d)$ is drawn from the traceless Gaussian unitary ensemble.
Asymptotics of PBT performance

“Central limit theorem”: \(Y \xrightarrow{N \to \infty} \text{spec}(G) \) in distribution.

\[F(\Lambda) = \frac{1}{d^{N+2}} \sum_{\alpha \perp_{d} N-1} \left(\sum_{\mu = \alpha + \square} \sqrt{m_{d,\mu} d_{\mu}} \right)^2 \]

Idea: Rewrite fidelity as expectation value

\[F(\Lambda) = \mathbb{E}_{\mathbf{\alpha} \perp_{d} N-1} [f(\mathbf{\alpha})] \text{ for a suitable function } f \]

and use CLT above to calculate with \(\tilde{f}(\text{spec}(G)) \) instead (much easier!).
Asymptotics of PBT performance

“Central limit theorem”: \(Y \xrightarrow{N \to \infty} \text{spec}(G) \) in distribution.

Ent. fidelity: \(F(\Lambda) = \frac{1}{d^{N+2}} \sum_{\alpha \leftarrow dN-1} \left(\sum_{\mu = \alpha + \square} \sqrt{m_{d,\mu} d_{\mu}} \right)^2 = \mathbb{E}_{\alpha \leftarrow dN-1} [f(\alpha)] \)

Need: Stronger convergence of expectation values for suitable functions \(f \) → main technical result in [arXiv:1809.10751].

Main result: Asymptotic behavior of entanglement fidelity

\[
F(\Lambda) = 1 - \frac{d^2 - 1}{4} \frac{1}{N} + O(N^{-\frac{3}{2} + \delta}) \quad (\text{hence } F(\Lambda) \to 1 \text{ as } N \to \infty)
\]
Table of contents

→ Port-based teleportation: Definition and properties

→ Symmetries of port-based teleportation

→ Asymptotics of port-based teleportation

→ Generalizations and concluding remarks
Fully optimized port-based teleportation

N maximally entangled states Φ_{AB}^+ with pretty good measurement (optimal!):

asymptotic behavior $F = 1 - O(N^{-1})$.

Better fidelity when optimizing over entangled state $\rho_{A^N B^N}$?

Yes, $F = 1 - \Theta(N^{-2})$.

Arbitrary PBT protocols:
Can always assume U_d and S_N symmetries as discussed before.

[Majenz '17], [Mozrzymas et al. '18], [arXiv:1809.10751]
Fully optimized port-based teleportation

Consider arbitrary port state ϕ_{ANBN} and corresponding states $\sigma_i = \text{Tr}_{B_i} \phi$ on $A^N B$.

Symmetrization: States σ_i and average state $\bar{\sigma}$ again have block-diagonal structure. Using the same technique as before (symmetries + SDP duality), we can derive a formula for entanglement fidelity:

$$F(\Lambda) = \frac{1}{d^{N+2}} \max_{c_\mu} \sum_{\alpha-\Delta N-1} \left(\sum_{\mu=\alpha+\square} \sqrt{c_\mu d_\mu m_{d,\mu}} \right)^2$$

where $\sum_{\mu \in \Delta N} c_\mu d_\mu m_{d,\mu} = 1$.

Second main result of arXiv:2008.11194:

The **same** pretty good measurement as before is optimal.

[Majenz '17], [Mozrzymas et al. '18], [arXiv:1809.10751]
Conclusion

Port-based teleportation: approximate teleportation scheme with unitary covariance that enables interesting applications.

Natural symmetries enable characterization of performance using tools from representation theory.

Asymptotics of PBT can be derived using interesting connection between representation theory and random matrix theory.

Can we use these tools to analyze the asymptotic behavior of other quantum-information theoretic tasks with similar symmetries?

Thank you for your attention!