Quantum codes from neural networks

Felix Leditzky
(JILA & CTQM, University of Colorado Boulder)

Joint work with Johannes Bausch (University of Cambridge)

arXiv:1806.08781

Beyond IID in information theory

Sydney, Australia
4 July 2019
Quantum capacity of quantum channels

- Most general description of **noise in a quantum system**:
 A quantum channel \(\mathcal{N} \) is a linear, completely positive, trace-preserving map.

- Quantum Shannon theory: Interpret \(\mathcal{N} : A \rightarrow B \) as **noisy communication link** between Alice and Bob.

- Protecting quantum system from noise in information-theoretic terms:
 How much quantum information can Alice send to Bob reliably through \(\mathcal{N} \)?

- Equivalent formulation:
 How much entanglement can Alice and Bob generate using \(\mathcal{N} \) and 1-LOCC?
Quantum information transmission

Quantum channel $\mathcal{N} : A \to B$

Goal:
Transmit quantum information from Alice to Bob.

Strategy:
Share (mixed) entangled state via \mathcal{N} and distill EPR pairs using local operations and **forward** classical communication $A \to B$.

separate labs
Quantum information transmission

Rate of the distillation protocol: coherent information
\[I_c(\psi_{RA}, N') := S(N(\psi_A)) - S(id_R \otimes N(\psi_{RA})). \]

Optimizing over quantum codes ψ:
Channel coherent information
\[I_c(N') := \sup_\psi I_c(\psi_{RA}, N'). \]

Can we achieve more?

[Devetak 2005; Devetak, Winter 2005]
Quantum information transmission

Idea: Use k channels in parallel to share multipartite state $|\psi\rangle_{RA^k}$.

Distillation rate: $\frac{1}{k}I_c(\psi_{RA^k}, N^\otimes k)$

For certain N and ψ,

$$\frac{1}{k}I_c(\psi_{RA^k}, N^\otimes k) > I_c(N).$$

This is called superadditivity of coherent information.

[Shor, Smolin 1996; DiVincenzo et al. 1998]
Quantum information transmission

Alice

Reference

Bob

pure input state

$|\psi\rangle_{RA^k}$

separate labs

\mathcal{N}

\mathcal{N}

\mathcal{N}

\mathcal{N}

mixed output state

$(\text{id}_R \otimes \mathcal{N}^\otimes k)(\psi_{RA^k})$

Quantum capacity:

$$Q(\mathcal{N}) = \sup_{k \in \mathbb{N}} \frac{1}{k} I_c(\mathcal{N}^\otimes k)$$

Good: Superadditivity can boost achievable rates, $Q(\mathcal{N}) > I_c(\mathcal{N})$.

Bad: In general, quantum capacity intractable to compute.

Challenge: Find good codes achieving superadditivity.

[Lloyd 1997; Shor 2002; Devetak 2005]
Quantum information transmission

Quantum capacity:
\[Q(\mathcal{N}) = \sup_{k \in \mathbb{N}} \frac{1}{k} I_c(\mathcal{N}^\otimes k) \]

Fundamental question:
Highest threshold?*
Assert \(Q(\mathcal{N}) > 0 \).

Practical question:
Highest possible rate?
Maximize \(\frac{1}{k} I_c(\mathcal{N}^\otimes k) \).

* for \(r \in \mathbb{R} \rightarrow \mathcal{N}_r \).
Talk outline

1. Neural network state ansatz for quantum codes
2. Quantum codes for interesting channel models
3. Numerical bottlenecks
4. Conclusion and open problems
Table of Contents

1 Neural network state ansatz for quantum codes

2 Quantum codes for interesting channel models

3 Numerical bottlenecks

4 Conclusion and open problems
Entanglement in quantum information transmission

► **Goal:** Find good quantum codes ψ_{RA^k} with high rate $\frac{1}{k} I_c(\psi, N^{\otimes k})$ (for fixed k).

► **Challenge:** Hard to parametrize multipartite entanglement in many-body quantum state with exponentially many degrees of freedom ($n = 2k$):

$$\left(\mathbb{C}^2\right)^{\otimes n} \ni |\psi_n\rangle = \sum_{s^n \in \{0,1\}^n} \psi(s^n)|s_1\rangle \otimes \ldots \otimes |s_n\rangle.$$

► **Idea from many-body physics:** Use ansatz for $|\psi_n\rangle$ with $\text{poly}(n)$ parameters that retains interesting features such as entanglement.

► Most prominent: tensor networks [Fannes et al. 1992; Verstraete and Cirac 2004]

► More recent: **neural network states** [Carleo and Troyer 2017]

► Network architectures: restricted Boltzmann machines, **feedforward nets**, ...
Quantum states from feedforward nets

- Hidden layers $h^{(m)}$, output layer o: biases $b^{(m)}$ and weight matrices $W_{ij}^{(m)}$.

- $h^{(m)} = f_m \left(W^{(m)} h^{(m-1)} + b^{(m)} \right)$ with activation function f_m such as rectified linear unit $\text{ReLU}(x) = \max\{0, x\}$ or hyperbolic tangent $\tanh(x)$.

- Up to normalization, $\psi(s^n) = o_1 + io_2$ (or $\psi(s^n) = \exp(o_1 + io_2)$).
Neural network states as quantum codes

- NN states are known to be capable of efficiently representing states such as graph states, surface codes, string-bond states and general stabilizer states. [Gao and Duan 2017; Glasser et al. 2018; Jia et al. 2018; Zhang et al. 2018]

- Versatile ansatz for multipartite entanglement → ansatz for good quantum codes?

- **Goal:** Maximize coherent information $\mathcal{I}_c(\psi, \mathcal{N}^\otimes k)$ w.r.t. network parameters $\{b_\theta, W_\theta\}$ that define ψ_{RA^k}:

 1. Compute $|\psi\rangle_{RA^k}$ for given weights $\{b_\theta, W_\theta\}$.

 2. Compute channel action $\sigma_{RB^k} := (\text{id}_R \otimes \mathcal{N}^\otimes k)(\psi_{RA^k})$.

 3. For the mixed state σ_{RB^k} compute $\mathcal{I}_c(\psi_{RA^k}, \mathcal{N}^\otimes k) = S(B^k)_{\sigma} - S(RB^k)_{\sigma}$.

 4. Update $\{b_\theta, W_\theta\}$ using suitable optimization technique.
Optimization procedure

- Machine-learning typically uses gradient-based updates (such as ADAM or Adagrad).
- **Problem:** Coherent information of a very noisy channel has **lots of local maxima** given by product states.

\[
\mathcal{I}_c(\chi_R \otimes \phi_A, \mathcal{N}) = S(B)_N(\phi) - S(RB)_{\chi \otimes \mathcal{N}(\phi)} \\
= S(B)_N(\phi) - S(R)_{\chi} - S(B)_N(\phi) = 0.
\]

- These maxima are not interesting for us, and gradient is likely to get stuck in them.
- **Idea:** use **gradient-free optimization** instead.
- **Good choices:** particle swarm optimization (PSO), artificial bee colonization (ABC), pattern/direct search (DS)
Table of Contents

1 Neural network state ansatz for quantum codes

2 Quantum codes for interesting channel models

3 Numerical bottlenecks

4 Conclusion and open problems
Dephrasure channel

- We apply the neural network state ansatz to find quantum codes for interesting channel models.

- Recently introduced: **dephrasure channel**. For \(p, q \in [0, 1] \),

\[
\mathcal{N}_{p, q}(\rho) := (1 - q) \left((1 - p)\rho + p\rho Z\rho Z \right) \oplus q \text{Tr}(\rho)|e\rangle\langle e|.
\]

- **dephasing + erasure**: first dephase the input with probability \(p \), then erase output with probability \(q \).

- Dephrasure channel exhibits **substantial superadditivity effects**.

- Superadditivity achieved by, e.g., weighted repetition codes

\[
\sqrt{\lambda}|0\rangle_R|0\rangle_A^\otimes k + \sqrt{1 - \lambda}|1\rangle_R|1\rangle_A^\otimes k.
\]
Dephrasure channel: NN setup

- For certain values of \((p, q)\) and \(k = 3, 4\) channel copies: NN ansatz finds quantum codes that **outperform all known ones**!

- **NN setup**: FF net with 4 hidden layers.

- **Activation functions**: \(\text{Cos} \rightarrow \text{ReLU} \rightarrow \text{ReLU} \rightarrow \text{ReLU}\).

- 182/306 real parameters vs. 128/512 in direct parametrization.

- Periodic activation function is non-standard in ML (sometimes even a no-go).

- However, \(\text{Cos}\) can easily implement parity check \(\rightarrow\) bias towards **degenerate codes**.

- Investigate dephrasure channel along \((p, 3p)\)-diagonal in the \((p, q)\)-plane.
Dephrasure channel: codes

Channel: $\mathcal{N}_{p,3p}$

$p \ldots$ dephasing probability

$3p \ldots$ erasure probability

Weighted repetition code:

$$|\varphi_n\rangle = \sqrt{\lambda}|0\rangle_R|0\rangle^\otimes k + \sqrt{1-\lambda}|1\rangle_R|1\rangle^\otimes k$$

Neural network codes:

α_3, β_4, ν_4

(FF net with Cos-ReLU-ReLU-ReLU)
Dephrasure channel: codes

Neural network codes:

\[|\alpha_3\rangle = a_1(|000\rangle_R|100\rangle_{A^3} + |110\rangle_R|001\rangle_{A^3}) + a_2(|000\rangle_R|110\rangle_{A^3} + |110\rangle_R|011\rangle_{A^3}) + a_3|001\rangle_R|000\rangle_{A^3} + a_4|011\rangle_R|111\rangle_{A^3} \]

\[|\beta_4\rangle = b_1(|0000\rangle_R|0101\rangle_{A^4} + |1111\rangle_R|1010\rangle_{A^4}) + b_2(|0100\rangle_R|0000\rangle_{A^4} + |1011\rangle_R|1111\rangle_{A^4}) \]

\[|\gamma_4\rangle = |0110\rangle_R \otimes (c_1|0111\rangle_{A^4} + c_2|1111\rangle_{A^4}) + c_3|1011\rangle_R|1000\rangle_{A^4} \]
Dephrasure channel: codes

Neural network codes:

\[|\alpha_3\rangle = a_1(|000\rangle_R|100\rangle_{A^3} + |110\rangle_R|001\rangle_{A^3}) + a_2(|000\rangle_R|110\rangle_{A^3} + |110\rangle_R|011\rangle_{A^3}) + a_3|001\rangle_R|000\rangle_{A^3} + a_4|011\rangle_R|111\rangle_{A^3} \]

\[|\beta_4\rangle = b_1(|0000\rangle_R|0101\rangle_{A^4} + |1111\rangle_R|1010\rangle_{A^4}) + b_2(|0100\rangle_R|0000\rangle_{A^4} + |1011\rangle_R|1111\rangle_{A^4}) \]

\[|\gamma_4\rangle = |0110\rangle_R \otimes (c_1|0111\rangle_{A^4} + c_2|1111\rangle_{A^4} + c_3|1011\rangle_R|1000\rangle_{A^4} \]
Generalized amplitude damping channel

- Generalized amplitude damping channel (GADC) $\mathcal{N}_{\gamma,N}$:
 qubit in contact with thermal bath at non-zero temperature.

- Transition probability $\gamma \in [0, 1]$, thermal bath temperature $N \in [0, 1]$.

- Kraus operators of $\mathcal{N}_{\gamma,N}$ are:

 $$
 K_1 = \sqrt{1-N}(|0\rangle\langle 0| + \sqrt{1-\gamma}|1\rangle\langle 1|) \quad K_2 = \sqrt{\gamma(1-N)}|0\rangle\langle 1|
 $$

 $$
 K_3 = \sqrt{N}(\sqrt{1-\gamma}|0\rangle\langle 0| + |1\rangle\langle 1|) \quad K_4 = \sqrt{\gamma N}|1\rangle\langle 0|
 $$

- $N = 0$: thermal bath at zero temperature \rightarrow GADC reduces to amplitude damping.

- Realistic noise model in superconducting quantum computing. [Chirolli and Burkard 2008]

- GADC (for $N \notin \{0, 1\}$) is neither degradable/antidegradable.
GADC: NN setup

- NN ansatz again finds quantum codes **outperforming all known ones**!

- **NN setup**: FF net with 4 hidden layers.

- **Activation functions**: Cos \rightarrow Tanh \rightarrow Tanh \rightarrow Tanh.

- 182/306 real parameters vs. 128/512 in direct parametrization.

- Investigate GADC for $N = 0.1$ and interesting γ regime.

- Benchmark against weighted repetition codes.
GADC: codes

\[\frac{1}{k} I_c(\cdot, N_{\gamma,0.1}^{\otimes k}) \]

Channel: \(N_{\gamma,0.1} \)
\(\gamma \ldots \) transition probability
\(N = 0.1 \ldots \) thermal bath temperature

Weighted repetition code:
\[|\varphi_n\rangle = \sqrt{\lambda} |0\rangle_R |0\rangle_A^{\otimes k} + \sqrt{1 - \lambda} |1\rangle_R |1\rangle_A^{\otimes k} \]

Neural network codes:
\(\alpha_3, \beta_4, \delta_5 \)
(FF net with Cos-Tanh-Tanh-Tanh)
Neural network codes:

\[|\alpha_3\rangle = a_1 |000\rangle_R |000\rangle_A^3 + a_2 |110\rangle_R |000\rangle_A^3 + \]
\[|111\rangle_R \otimes (a_3 |001\rangle_A^3 + a_4 |010\rangle_A^3 + a_5 |100\rangle_A^3) \]
\[|\beta_4\rangle =
\[|1110\rangle_R \otimes (b_1 |0101\rangle_A^4 + b_2 |1010\rangle_A^4) +
\[b_3 |0001\rangle_R |1111\rangle_A^4 + b_4 |1000\rangle_R |1111\rangle_A^4 \]
\[|\delta_5\rangle =
\[|00011\rangle_R \otimes (c_1 |01010\rangle_A^5 + c_2 |10101\rangle_A^5) +
\[c_3 |10110\rangle_R |11111\rangle_A^5 + c_4 |11101\rangle_R |11111\rangle_A^5 \]
Depolarizing channel

- **Depolarizing channel** \mathcal{D}_p: For $p \in [0, 1]$,
 \[\mathcal{D}_p(\rho) = (1 - p)\rho + \frac{p}{3}(X\rho X + Y\rho Y + Z\rho Z) \]

- **Quantum capacity unknown** in the high-noise regime.

- In the interval $0.1889 \lesssim p \lesssim 0.1904$ and for up to $k = 10$ channel copies, best known codes are simple repetition codes $|0\rangle_R |0\rangle^\otimes k + |1\rangle_R |1\rangle^\otimes k$.

- **NN state ansatz + PSO reliably finds these codes after few optimization steps.**

- Rep. codes are **typically not found** with most common optimization techniques.

- Interesting: for $k \lesssim 6$ we couldn’t find any better codes.
Numerical bottlenecks

- Target function $I_c(\psi, \mathcal{N}^{\otimes k})$ is an entropic quantity.
 → Monte Carlo sampling method of [Carleo and Troyer 2017] not applicable.

- Worse: Need to diagonalize large matrix $(2^{2k} \times 2^{2k})$ to compute entropies.

- Infeasible in optimization methods for $k \gtrsim 7$.

- Keeps us from tapping into the scaling advantage of NN states over direct parametrization ($\text{poly}(k)$ vs. $\exp(k)$).

- However: NN states seem to be a good ansatz for entanglement in quantum codes.
Numerical bottlenecks

Possible remedy 1

► Find an easy to compute “indicator function” for positivity of coherent information?

► Natural candidate: Rényi entropies $S_\alpha(\rho) = \frac{1}{1-\alpha} \log \text{Tr} \rho^\alpha$ with $\alpha \in \mathbb{N}$.

► Problem 1: Differences of Rényi entropies are problematic. \[\text{[Linden et al. 2013]}\]

► Problem 2: In high-noise regime, superadditivity effects have tiny magnitude.

Possible remedy 2

► Switch to optimization techniques that minimize the number of function evaluations?

► Find a smarter gradient-based technique?
Numerical bottlenecks

▶ Another problem: computing the channel action $\mathcal{N}^\otimes k$.

▶ Numerically favorable implementations:

▷ Sequential Kraus operator application (# op’s $O(n)$):

$$\sigma_1 = (\text{id} \otimes \ldots \otimes \text{id} \otimes \mathcal{N})(\varphi) \rightarrow \sigma_2 = (\text{id} \otimes \ldots \otimes \text{id} \otimes \mathcal{N} \otimes \text{id})(\sigma_1) \rightarrow \ldots$$

▷ Transfer matrix formalism: translate channel application to matrix multiplication.

▶ Both approaches involve the handling of large dense matrices.

▶ Can we model/approximate the channel action using a neural network?

▶ Related: circuit decompositions of quantum channels.
[Iten et al. 2017; Shen et al. 2017]
Table of Contents

1 Neural network state ansatz for quantum codes

2 Quantum codes for interesting channel models

3 Numerical bottlenecks

4 Conclusion and open problems
Conclusion

- Good quantum codes for quantum information transmission have **non-trivial multipartite entanglement**.

- **Hard to find** both analytically/algebraically and in numerical optimization.

- Neural network states: **efficient representation** of interesting entangled states.

- In conjunction with global optimization techniques, **NN states yield good superadditive quantum codes**.

- Works well for interesting channels such as **dephrasure channel, generalized amplitude damping channel, and depolarizing channel**.
Open problems

- **Overcome the numerical limitations** in our applications to go to larger blocklengths:
 - diagonalizing large matrices;
 - computing entropies;
 - compute channel action.

- Extend ansatz to use neural network density operators?
 [Torlai and Melko 2018]

- **Identify other quantum information-theoretic applications** of NN states.

- Use more sophisticated ML techniques (autoencoders, adversarial networks)?
Thank you very much for your attention!