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Introduction

How are quantum communication networks different from classical networks?

How can we quantify this different behavior?
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Overview of main results: two angles

Information-theoretic: Operational nonlocality:

Shared entanglement enhances Network statistics violating facet inequalities

capacity region of multiple access channels.  bounding "classical polytope" certify genuinely
quantum resources in an operational way.
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Multiple access channel

Two (or more) senders send messages to a single receiver.
Mathematical model: conditional probability distribution N(z|a, b).

Input RVs A and B are independent, channel N defines output RV Z.

independent inputs

B
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Capacity region

Capacity region is defined as closure of all achievable rate pairs (R;, Ro).

R, ) Coding theorem

Achievable rate pairs (Ry, R>) satisfy
Ry <Z(A;Z|B)

R. < I(B; Z|A)
R + Ry < T(AB: 2)

for any product distribution pag = paps.

[Ahlswede '71], [Liao '72] 04/20



Entanglement assistance
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Non-local games

Alice and Bob answer questions from a referee without any communication.
They agree on a (classical, quantum, ...) strategy beforehand.

Alice and Bob win if question-answer tuple (x, y, a, b) lies in the winning condition W .

Referee

guestion x guestion y
a b

Alice S Bob

06/20



Example: CHSH game

Classical value w(QG): best winning probability with classical strategies.

Quantum value w*(@G): best winning probability with quantum strategies.

CHSH game

Alice and Bobwinifa® b=x Ay.

Classical value: w(GgpsH) = 3/4

Quantum value: w*(GcnsH) = cos?(7/8) ~ 0.85

Achieved by jointly measuring local shares of an ebit |$*)

in one of two bases depending on question values X, y. 07/20



Example: Magic square game

- - | Z | ZI| | ZZ
Winning conditions

- Alice: row parity even
1 1 - Bob: column parity odd X | | X | X X
- Same answer in
w(Gus) = 8/9

verlappi |

8/9 = w(Gus) < w*(Gus) =1
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MAC based on non-local game

Idea: Senders play a non-local game G with each other and try to send the questions.

MAC N transmits questions noiselessly iff they win the game.

X X
m If (x,y,a, b) e Wthen (X, y) = (x, y).
r-
| -~
Game i A i Z=(X, Y)
strategy i B i
L E If (x,y,a,b) ¢ W then (X, ) unif. rand.
Y Y

[Quek & Shor '17] 09/20



Enlarged capacity region

Let Nys be the MAC defined in terms of the magic square game (|Z| = 9, w(G) = 8/9).
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Outer bound on classical strategies:
Ri+ R <log(|Z]—1+ \Z\_|Z|(1_“’(G)))

~ 3.02

perfect

outer bound on
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Using perfect quantum strategy:
(R1, R2) = (log 3, log 3) is achievable,

| | for which Ry + R> = 2log3 ~ 3.17.



Further results

There is a linear system non-local game for which a perfect quantum strategy
needs unbounded entanglement. [Slofstra, Vidick '18], [Slofstra '19]

Main result: Top-right corner in the capacity region of the corresponding MAC
can only be achieved in the limit of unbounded entanglement.

There is a non-local game version of 3SAT, for which it is NP-hard to decide
whether there exists a perfect strategy. [Hastad '01]

Main result: It is NP-hard to decide for the corresponding MAC whether the
top-right corner in the capacity region can be achieved.

Follow-up work: Noetzel 20, Pereg et al. 23, Yun et al. 23, ...
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Certifying quantum resources in networks

Question: How do we certify that a communication network includes
genuinely quantum resources?
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Model assumptions

Classical networks

Bounded classical communication at each node.

------------------------- Global shared randomness available at every node.
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Behaviour (= I/0 distribution) P(y|x) is determined by communication network.

[Bowles et al. '15], [Frenkel & Weiner '15], [Doolittle & Chitambar '21] 13/20



Facet inequalities and classical simulation cost

Classical behaviors form convex polytope that can be written as intersection of
half-spaces determined by facet inequalities F:

v > (F, P)

Behaviors P outside the classical polytope certify quantum resources.
For those behaviors we can quantify non-classicality using classical simulation error:

1 oo oo 1
D(V,P) = 27 Z\V(y\X) — P(y|X)| = 1 | f|<v, P)

where V is a vertex (deterministic behavior) of the classical polytope.

[Bowles et al. '15], [Doolittle & Chitambar '21] 14/20



Classical polytope and quantum violations
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Simple example: Point-to-point signaling

Xy € [6],a € [2], xo € [4] Facet inequalities (v, F)):
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Quantum resources

Quantum communication networks may include shared entanglement, quantum
communication, and measurements.

01 =g EA1 = i pre == T = 1
o o
12 =P EA2 — 2 pre? = T2 = 2
Entanglement-assisted senders Entanglement-assisted receivers
g Q v =M, |,
DT i
Entanglement-assisted Entanglement-assisted

qguantum communication classical communication 17/20



Certifying non-classicality in networks

Main result: We use a variational quantum optimization ansatz to certify quantum
resources in various network topologies using facet inequality violations.
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Conclusion

Communication networks show fundamentally different behavior when equipped
with qguantum resources such as shared entanglement or guantum communication.

In a simple multiple acccess channel scenario, shared entanglement between
senders may increase the capacity region, and we may need
unbounded entanglement to achieve this advantage.

In arbitrary communication networks facet inequalities bound the polytope of
all classical behaviors, and violations of these inequalities certify quantum resources.

Thank you for your attention!
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